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Abstract. In our previous work, we used canonical correlation analysis
(CCA) to extract shared information between audio and lyrical features
for a set of songs. There, we discovered that what audio and lyrics share
can be largely captured by two components that coincide with the di-
mensions of the core affect space: valence and arousal. In the current
paper, we extend this work significantly in three ways. Firstly, we exploit
the availability of the Million Song Dataset with the MusiXmatch lyrics
data to expand the data set size. Secondly, we now also include social
tags from Last.fm in our analysis, using CCA also between the tag space
and the lyrics representations as well as between the tag and the audio
representations of a song. Thirdly, we demonstrate how a multi-way ex-
tension of CCA can be used to study these three datasets simultaneously
in an incorporated experiment. We find that 2-way CCA generally (but
not always) reveals certain mood aspects of the song, although the ex-
act aspect varies depending on the pair of data types used. The 3-way
CCA extension identifies components that are somewhere in between the
2-way results and, interestingly, appears to be less prone to overfitting.

Keywords: Canonical Correlation Analysis, Mood Detection, Million
Song Dataset, MusiXmatch, Last.fm.

1 Introduction

In this paper we ask what is shared between the audio, lyrics and social tags
of popular songs. We employ canonical correlation analysis (CCA) to find max-
imally correlated projections of these three feature domains in an attempt to
discover commonalities and themes. In our previous work [16] we attempted to
maximise the correlation between audio and lyrical features and discovered that
the optimal correlations related strongly to the mood of the piece.

We extend this work significantly in three ways. Firstly, we make use of
the recently-available Million Song Dataset (MSD,[1]) to gather a large number
of audio and lyrical features, verifying our previous work on a larget dataset.
Secondly, we incorporate a third feature space based on social tags from Last.fm?.

* This work was partially supported by the EPSRC grant number EP/E501214/1
! www.last.fm

9th International Symposium on Computer Music Modelling and Retrieval (CMMR 2012)
19-22 June 2012, Queen Mary University of London
All rights remain with the authors.
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On these three datasets we are able to conduct pairwise 2-dimensional CCA on
the largest public dataset of this type currently available. Lastly, we demonstrate
how 3-dimensional CCA can be used to investigate these data simultaneously,
leading to a multi-modal analysis of three aspects of music. Whilst it was intuitive
to us in our previous work that lyrics and audio would have mood in common,
it is less clear to us what commonalities are shared between the other pairs of
datasets. We therefore take a more serendipitous approach in this study, aiming
to discover which features are most strongly related.

The rest of this paper is arranged as follows. In the remainder of this Section
we discuss the relevant literature and background to our work. We detail our
data collection methods, feature extraction, and framework in Section 2. Section
3 deals with the theory of CCA in 2 and 3 dimensions. In Section 4 we present
our findings, which are discussed and concluded in Section 5.

1.1 The Core Affect Space

Although it may be the case that our CCA analysis leads to components other
than emotion, we suspect that many will relate to the mood of the piece. We
therefore review the analysis of mood in this Subsection.

Russell [17] proposed a method for placing emotions onto a two-dimensional
valence-arousal space, known in psychology as the core affect space [18]. The
valence of a word describes its attractiveness/aversiveness, whilst the arousal
relates to the strength, energy or activation. An example of a high valence, high
arousal word is ecstatic, whilst depressed would score low on both valence and
arousal. A third dimension describing the dominance of an emotion has also been
suggested [6], but rarely used by researchers. A more detailed visualisation of
the valence/arousal space with example words is shown in Figure 1.

1.2 Relevant Works

The valence/arousal space has been used extensively by researchers in the field
of automatic mood detection from audio. Harmonic and spectral features were
used by [8], whilst in [5] they utilised low-level features such as the spectral
centroid, rolloff, flux, slope, skewness and kurtosis. Time-varying features in the
audio domain were employed by various authors [15, 20], which included MFCCs
and short time Fourier transforms. For classification, many authors have utilised
SVMs, which have been shown to successfully discriminate between features [9].

In the lyrical domain, [7] used bag-of-words (BoW) models as well as n-grams
and term frequency-inverse document frequency (TFIDF) to classify mood based
on lyrics, whilst [10] made use of the experimentally deduced affective norms of
english words (ANEW) to assign valence and arousal scores to individual words
in lyrics. Both of these studies were conducted on sets of 500-2,000 songs.

The first evidence of combining text and audio in mood classification can
be seen in [21]. They employed BoW text features and psychological features
for classification and demonstrated a correlation between the verbal emotion
features and the emotions experienced by the listeners on a small set of 145
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Aroused 1 Excited
a
>
o
Angry < Delighted
Frustrated Pleased
Valance =
Miserable Satisfied
Sad At ease
Tired Sleepy

Fig.1: The 2-dimensional valence/arousal space as proposed by Russell [17].
Words with high valence are more positive, whilst low valence words are pes-
simistic. High/low arousal words are energetic/restful respectively.

songs. A larger study was conducted in [13] where they classified 1,000 songs
into 4 mood categories and found that by combining audio and lyrical features
an increase in recognition accuracy was observed.

In the tag domain, [14] used the social website Last.fm to create a semantic
mood space using latent semantic analysis. Via the use of a self-organising map,
they reduce this high-dimensional space to a 2-D representation and compared
this to Russell’s valence/arousal space, with encouraging results.

In combining tag and audio data, [3] demonstrated that tag features were
more informative than audio, whilst the combination was more informative still.
This was conducted on a set of 1,612 songs and up to 5 mood or theme categories.
Finally, a recent study considered regression of musical mood in continuous di-
mensional space using combinations of audio, lyrics and tags on a set of 2,648
UK pop songs [19].

Whilst insightful in terms of features and classification techniques, all of
the studies previously mentioned were conducted on small datasets by todays
standards (all significantly less than 10,000 songs). In this paper we address
this issue in a truly large-scale, multi-modal analysis. We discuss our feature
extraction and framework for our analysis in the following Section.
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2 Data Collection & Framework

This section details our data collection methods and the motivation for our ap-
proach. We found the overlap of the Million Song, MusiXmatch and Last.fm
datasets to be 223,815 songs in total, which was comprised of 197,436 training
songs and 26,379 test songs. After removing songs which contained empty fea-
tures, no lyrics or no tags, as well as those not in English, we were left with
101,235 (88%) training songs and 13,502 test songs (12%).

2.1 The Million Song Dataset

Devised as a way for researchers to conduct work on musical data without the
need to purchase a large number of audio files, the Million Song Dataset was
released on Feb 8", 2011. We downloaded this dataset in its entirety and ex-
tracted from it features relating to the audio qualities of the music. The features
we specifically computed are shown in Table 1. We also give our interpretation
of the features extracted, although there are some (e.g. danceability) where we
are unsure of the feature extraction process.

Table 1: List of audio features extracted from the million song dataset, with

interpretations.
Feature Interpretation
Mean Bar Confidence Average bar stability
Std Bar Confidence Variation in bar stability
Mean Beat Confidence Average beat stability
Std Beat Confidence Variation in beat stability
Danceability Danceability of track
Duration Total track time in seconds
Key Track harmonic centre (major keys only)
Key Confidence Confidence in Key
Loudness Loudness of track
Mode Modality (major or minor) of track
Mode Confidence Confidence in Mode
Mean Sections Confidence Average confidence in section boundaries
Std Sections Confidence Variation in section boundary confidences
Mean Seg. Conf. Average confidence in segment boundaries
Mean Timbres 1-12 12 features relating to average sound quality
Std Timbres 1-12 12 features related to variation in sound quality
Tempo Speed in Beats Per Minute
Loudness Max Total maximum of track loudness
Loudness Start Local max of loudness at the start of the track
Tatums Confidence Confidence in tatum prediction
Time Signature Predicted number of beats in a bar
Time Signature Confidence Confidence in time signature
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2.2 MusiXmatch

An addition to the MSD, the MusiXmatch dataset contains lyrical information
for a subset of the million songs. The features are stored in bag-of-words format
(for copyright reasons), and are stemmed versions of the top 5,000 words in the
database. In order to ensure we had meaningful words, we restricted ourselves to
the words which were part of the ANEW dataset [4], which reduced our dataset
to 603 words. We converted the BoW data to a term frequency-inverse document
frequency (TFIDF) score [11] via the following transformation.

Let the term frequency of the it feature from the j** song be simply the
BoW feature normalised by the count of this lyric’s most frequent word:

|word ¢ appears in lyric j|

TF;, =

maximum word count of lyric j

where | - | denotes ‘number of’. The inverse document frequency measures the
importance of a word in the database as a whole and is calculated as:

total number of lyrics

IDF; =1
1708 [lyrics containing word 4| + 1

(we include the 41 term to avoid potentially dividing by 0). The TFIDF score
is then the product of these two values:

TFIDF,LJ = TFi}j x IDF13

The TFIDF score gives an indication of the importance of a word within a
particular song and the entire database. Note that we used the ANEW database
simply to construct a dictionary of words which contain some emotive content
- no experimental valence/arousal or mood scores were incorporated into our
feature matrix.

2.3 Last.fm Data

The Last.fm data contains information on user-generated tags and artist simi-
larities, although we neglect the latter for the purpose of this study. The dataset
contains information on 943,347 tracks matched to the MSD and tag counts
for each song. We discovered 522,366 unique tags although only considered tags
which appeared in at least 1,000 songs, which resulted in 829 features. The top
tags from the dataset were Rock, Pop, Alternative, Indie and Flectronic. We
constructed a TF-IDF score for each tag in each song analogously to the previ-
ous section. Although it would have been possible to filter the tags according to
the ANEW database as per the lyrics, we know that tags contain information
other than mood, such as genre data. We are optimistic that our algorithm may
pick up such information, and so did not filter the Last.fm tags.
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2.4 Framework

In our previous work [16] we introduced an exploratory framework for the use of
CCA in correlating audio and lyrical features. We briefly recap this framework
for 2-way CCA before extending it to use in 3 datasets.

We are interested in what is consistent between the audio, lyrics and tags of
a song. In previous work, researchers have searched for a function f which maps
audio to mood [f(audio) = mood], else from lyrics or tags [g(lyrics) = mood,
h(tags) = mood]. In our 2-way CCA we seck functions which satisfy one of:

f(audio) ~ g(lyrics)
f(audio) =~ h(tags)
g(lyrics) =~ h(tags)

to a good approximation and for a large number of songs. Previously, we assumed
that the first relationship in the above equations captured some aspect of mood,
knowing of no other commonalities between the audio and lyrics of a song. This
was verified by using 2-way CCA to find such functions f and g. In this study,
we take a more serendipitous approach. We will use 2-way CCA on each pair
of datasets and see which kinds of commonalities are found. Perhaps they will
relate to mood, but we hope to discover other relationships and correlations
within the data. The extension of this work to 3 dimensions follows a similar
framework. We now seek functions f, g and h such that:

f(audio) =~ g(lyrics) =~ h(tags) (1)

simultaneously. Again, these functions will not hold true for every song, but we
hope they are approximately true for a large number of songs. The next Section
deals with the theory of canonical correlation analysis.

3 Canonical Correlation Analysis and a 3-Way Extension

3.1 2-Way CCA

Given two datasets X € R"*% and Y € R"¥% canonical correlation analysis
finds what is consistent between them. This is realised by finding projections of
X and Y through the dataset which maximise their correlation. In other words,
we seek weight vectors w, € R% wy € R% such that the angle  between Xw,
and Yw, is minimised:

{wy, wy} = argmin 6(Xw,, Yw,)

Wy , Wy

Conveniently, this can be realised as a generalised eigenvector problem (a full
derivation can be found in, for example, [2]):

(57 ) () = O ) () ®
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In our experiments, X and Y will represent data matrices formed from the MSD,
MusiXmatch or Last.fm datasets. The eigenvalue A is the achieved correlation
between the two datasets and (w,,w,) are the importance of each vector in the
corresponding data space. The eigenvectors corresponding to A can be sorted by
magnitude to give a rank of feature importance in each of the data spaces.

3.2 3-Way CCA

Whilst it will be insightful to see the pairwise 2-way correlations between the
three datasets, it would be more satisfying to investigate what is consistent
between all 3 simultaneously. Various ways of exploring this have been explored
in [12] - a natural extension in our setting can be motived as follows. Consider
three datasets X € R"*% Y ¢ R™%dy X ¢ RP*4: We motivate the correlation
of these three variables graphically. Consider 3 datasets and (for ease of plotting)
3 songs within this set. A potential set of projections Xwy,Ywy, and Zwz is
shown in Figure 2.

Song 3

A

» Song 2

Song 2 %

Fig. 2: Motivation for 3-way CCA on 3 example songs, showing the projections
X’LUX,Y’LUy, sz.

It is clear that the three projections are strongly correlated if the norm of
their sum is large. However, this is easy to obtain if each of the projections is
arbitrarily large. We therefore enforce the constraint that the individual lengths
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are bounded, and solve the following optimization problem:

max || Xw, + Yw, + Zw, + 1|

We , Wy, Wz

st || Xwx|? + |[Ywy|]® + | Zwz|? =1

Solving the above via the method of Lagrange multipliers, we obtain

10

550 [1Xwx + Yuy + Zwz |2 = A Xux |2 + [Yuy|? + | Zwz]?)] =0

where the asterix * represents partial differentiation with respect to the appro-
priate variable. This leads to the simultaneous equations

XT"Xwx + X"Ywy + XTZwy —AXTXwx =0
YT Xwx + Y " Ywy + YT Zwy —AYT Xwy =0
Z"Xwx + Z"Ywy + ZT Zwy — ANZT Zwy =0

which, in matrix form, is

0 XTy XTz wx XTxX o 0 wx
Y'x o Y7z wy | =A—=1) 0 YTy o wy (3)
ZtX ZTy 0 wy 0 0 zZTz wy

Substituting A — A — 1, we see that 3-dimensional CCA is an obvious extension
of the 2-dimensional set-up seen in Equation 2. Note however that the A is now
a generalisation of the notion of correlation, and is not necessarily bounded
in absolute value by 1. In our setting, the datasets X,Y and Z represent the
MSD, MusiXmatch and Last.fm datasets and our aim will be to maximise the
correlation between them. Our experimental results using pairwise CCA and
3-way CCA are presented in the next Section.

4 Experiments

4.1 Awudio - Lyrical CCA

We begin with a reproduction of our previous work [16] which uses CCA on
audio and lyrical datasets. This will serve to verify our method scales to datasets
of realistic sizes. The projections of the Audio and Lyrical datasets, ranked
by test correlation magnitude, are shown in Table 2. In each pairwise CCA
experiments we found the significance of the correlations under a x? distribution
to be numerically 0, owing to the extremely large data sizes. It is therefore
more important to look at the magnitude of the correlations rather than their
significance in the following experiments.

These projections agree with our previous finding that mood is one of the
common components between audio and lyrics. In the first component, words
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Table 2: Features with largest weights using Audio and Lyrical features in 2-way
CCA, first 3 CCA components. Training correlations on the first three compo-
nents were 0.5032, 0.4484 and 0.2409 whilst the corresponding test correlations
were 0.5034, 0.4286 and 0.2875.

CCA Lowest Highest
Comp.|Lyrical Feature Lyrical Weight|| Lyrical Paper Lyrical Weight
Death -0.0358 Love 0.0573
Dead -0.0274 Baby 0.0394
1 Burn -0.0239 Blue 0.0197
Hate -0.0219 Girl 0.0190
Pain -0.0204 Man 0.0170
Audio Feature Audio Weight || Audio Feature Audio Weight
Loudness Max -0.6824 Mean Timbre 1 0.6559
Loudness -0.0711 Mean Seg. Conf. 0.1638
1 Duration -0.0413 Loudness Start 0.1539
Mean Timbre 10 -0.0311 Mean Timbre 5 0.0698
Std Timbre 6 -0.0222 Mean Timbre 6 0.0649
Lowest Highest
Lyrical Feature Lyrical Weight||Lyrical Feature Lyrical Weight
Dream -0.0182 Man 0.0354
Love -0.0177 Hit 0.0325
2 Heart -0.0142 Girl 0.0303
Fall -0.0117 Rock 0.0291
Lonely -0.0113 Baby 0.0268
Audio Feature Audio Weight || Audio Feature Audio Weight
Loudness Max -0.5568 Mean Timbre 1 0.7141
Loudness Start -0.2846 Loudness 0.1424
2 Std Seg. Conf. -0.0855 Std Timbre 8 0.1233
Std Timbre 4 -0.0525 Mean Seg. Conf. 0.1227
Std Timbre 1 -0.0402 Mean Timbre 8 0.0446
Lowest Highest
Lyrical Feature Lyrical Weight||Lyrical Feature Lyrical Weight
Baby -0.0304 Man 0.0572
Fight -0.0281 Love 0.0409
3 Hate -0.0223 Dream 0.0341
Girl -0.0223 Child 0.0301
Scream -0.0199 Dark 0.0295
Audio Feature Audio Weight || Audio Feature Audio Weight
Mean Timbre 1 -0.6501 Loudness Max 0.5613
Loudness Start -0.2281 Duration 0.1874
3 Std Timbre 6 -0.1507 Loudness 0.1377
Std Seg. Conf. -0.0898 Std Timbre 8 0.1050
Tatums Conf. -0.0850 Std Timbre 10 0.0891
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with low weights appear more aggressive, whilst more optimistic words have the
highest weights. This suggests that this CCA component has captured the notion
of valence. Audio features in this domain show that high valence songs are loud,
whilst low valence words have important timbre features.

The second CCA component appears to have identified relaxed lyrics at one
extreme and more active words at the other. We consider this to be a realisa-
tion of the arousal dimension. In the audio domain, loudness and timbre again
seems to play an important role. It is more difficult to interpret the third CCA
component, although the sharp decay of test correlation values show that the
first two CCA components dominate the analysis.

4.2 Audio - Tag CCA

We now investigate 2-way CCA on audio/tag data, using Last.fm tags in place
of the lyrical data from Subsection 4.1. Components 1-3 are shown in Figure 3.

The first component of this CCA analysis seems to have found that the
maximal correlation can be obtained by having tags associated with metal tags
at one extreme and more serene tags at the other. The audio features in this
CCA component seems to be well described by the later timbre features.

In the second component, we also see an obvious trend, with modern urban
genre tags receiving high weights and more traditional music at the other. In the
audio space, these genres seem to be associated with timbre and audio features.

The correlations between these two sets is so strong that we can even inter-
pret the third CCA component, which has identified modern electronic music
and acoustic blues/country as strongly opposing tags in this dimension. Interest-
ingly, components 2 and 3 appear to have identified two distinct types of ‘oldies’
music (folk/blues respectively). In the audio domain these are accompanied by
structural stability (segment/tatum confidence) features.

4.3 Lyrical - Tag CCA

The first three CCA components of this experiment are shown in Figure 4.

In the first component it seems we are distinguishing heavy metal genres from
less aggressive styles. In the lyrical domain we see that the words with low weights
hold strongly negative valence; those with high weights are more optimistic. The
authors find the notion of Melodic Black Metal somewhat oxymoronic.

The second component also has a clear trend - extremes in this dimension
appear to be hip-hop/rap vs. worship music. We postulate that this represents
the dominance dimension mentioned in the Introduction, with the lyrical weights
corroborating this. In the third component we see no particular trend, which
is supported by the low correlation of 0.1807. Comparison with the training
correlation of 0.4826 suggests that this component is suffering from overfitting.

4.4 3-way Experiment
We display our results from 3-way CCA in Table 5.
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Table 3: Features with largest weights using Audio and Tag Features in 2-way
CCA, first 3 CCA components. Training correlations on the on these components
were 0.7361, 0.6432 and 0.5725 whilst the corresponding test correlations were

0.5685, 0.5237 and 0.3428 respectively.

CCA Lowest Highest
comp.| Tag Feature Tag Weight Tag Feature Tag Weight
Female Vocalists -0.0352 Metal 0.0672
Acoustic -0.0304 Death Metal 0.0542
1 |Singer-Songwriter -0.0289 Brutal Death Metal 0.0425
Classic country -0.0271 Punk rock 0.0378
Folk -0.0265 Metalcore 0.0371
Audio Feature Audio Weight|| Audio Feature Audio Weight
Mean Timbre 1 -0.5314 Loudness Max 0.7460
Loudness Start -0.1700 Std Timbre 6 0.0988
1 Mean Timbre 6 -0.1558 Mean Timbre 2 0.0500
Mean Seg. Conf. -0.1469 Mean Timbre 3 0.0491
Mean Timbre 5 -0.1021 Std bar Conf. 0.0267
Lowest Highest
Tag Feature Tag Weight Tag Feature Tag Weight
Oldies -0.0153 Hip-Hop 0.0418
Beautiful -0.0132 Dance 0.0355
2 60s -0.0126 Hip hop 0.0353
Singer-Songwriter -0.0116 Rap 0.0351
Folk -0.0110 Rnb 0.0231
Audio Feature Audio Weight|| Audio Feature Audio Weight
Loudness Start -0.5069 Mean Timbre 1 0.7522
Loudness Max -0.3506 Loudness 0.1248
2 Mean Timbre 6 -0.0631 Std Timbre 8 0.0578
Std Timbre 1 -0.0374 Mean Timbre 4 0.0497
Std Seg. Conf. -0.0360 Mean Timbre 10 0.0415
Lowest Highest
Tag Feature Tag Weight Tag Feature Tag Weight
Electronic -0.0284 Oldies 0.0335
Dance -0.0220 Classic Blues 0.0325
3 Vocal Trance -0.0198 Classic country 0.0290
Epic -0.0186 50s 0.0279
Pop -0.0181 Delta blues 0.0250
Audio Feature Audio Weight|| Audio Feature Audio Weight
Mean Timbre 1 -0.6988 Loudness Max 0.6416
Mean Timbre 4 -0.1141 Mean Timbre 3 0.1404
3 Tatums Conf. -0.0649 Mean Seg. Conf. 0.0757
Duration -0.0589 Mean Timbre 6 0.0732
Std Segs Conf. -0.0556 Loudness Start 0.0507
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Table 4: Features with largest weights using Lyrical and Tag Features in 2-way
CCA, first three CCA components. Training correlations on these components
were 0.5828, 0.4990 and 0.4826 whilst test correlations were 0.3984, 0.3713 and
0.1807 respectively.

CCA Lowest Highest
comp.| Lyrical Feature Lyrical Weight| Lyrical Feature Lyrical Weight
Death -0.1851 Love 0.2330
Dead -0.1201 Baby 0.1807
Human -0.1049 Girl 0.0792
1 God -0.0993 Christmas 0.0726
Pain -0.0925 Blue 0.0679
Tag Feature Tag Weight Tag Feature Tag Weight
Brutal Death Metal -0.3029 Xmas 0.0785
Death Metal -0.2470 Female Vocalists 0.0718
1 Metal -0.2449 Oldies 0.0688
Melodic black metal -0.2029 Pop 0.0680
Black metal -0.1338 Rnb 0.0652
Lowest Highest
Lyrical Feature Lyrical Weight| Lyrical Feature Lyrical Weight
Hit -0.1448 Christmas 0.4082
Man -0.1267 Snow 0.0907
2 Rock -0.1180 Glory 0.0607
Money -0.1073 Joy 0.0549
Brother -0.0999 Angel 0.0530
Tag Feature Tag Weight Tag Feature Tag Weight
Hip hop -0.2312 Xmas 0.4111
Rap -0.2014 Christmas 0.1679
2 Hip-Hop -0.1927 Christian 0.0662
Gangsta Rap -0.1460 Female Vocalists 0.0501
Underground hip hop -0.1143 Worship 0.0480
Lowest Highest
Lyrical Feature Lyrical Weight| Lyrical Feature Lyrical Weight
Love -0.0273 Christmas 0.6031
Heart -0.0262 Snow 0.0992
3 Rain -0.0247 Man 0.0800
Alone -0.0229 Rock 0.0716
Dream -0.0224 Hit 0.0702
Tag Feature Tag Weight Tag Feature Tag Weight
Love -0.0399 Xmas 0.5932
Female vocalists -0.0257 Christmas 0.2381
3 Alternative rock -0.0252 Hip hop 0.1265
Rain -0.0237 Rap 0.0975
Oldies -0.0227 Hip-Hop 0.0906
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In this incorporated experiment, the most prevalent dimension appears to
relate to arousal - highly weighted tags and features are gentle in nature, with
aggressive tags, lyrics and audio features. The second component seems to rep-
resent arousal. We struggle to find an explanation for the third component.

5 Discussion & Conclusions

In this Section, we discuss some of the findings from the previous Section, sum-
marise the conclusions of our study and suggest areas for future work.

5.1 Discussion

It is clear there are similar components in this study across different experiments.
For instance, the first component of the audio/lyrical 2-way CCA experiment
in the lyrical domain (first few rows of Table 2 ) were very similar to the first
component in the lyrical domain in the 3-way experiment (first rows of Table 5,
second cell). It appears that both of these discovered dimensions are capturing
the valence of the lyrics. To verify that these projections were indeed similar,
we computed the correlation between them (ie Ywy from Table 2 with Ywy
from Table 5), and found it to be 0.9979. The conclusion to be drawn is that
the valence of lyrics is very easily captured, by comparing with audio and/or tag
information.

We now turn our attention to the second CCA component. Interested in what
3-Way CCA analysis offered over pairwise CCA experiments, we investigated
the correlations between each pair of lyrical and tag projections from all three
experimental set-ups (2 pairwise and 3-Way). These are shown in Table 6.

Table 6: Comparison of Lyrical and Tag projections in pairwise and 3-way ex-
periments.

(a) Lyrical Projections (b) Tag Projections
CCA YWy CCA ZWgz
comp. 2 |Lyrics/Tags 3-Way CCA comp. 2 |Tags/Lyrics 3-Way CCA
Lyrics/Audio| 0.8679 0.9899 Tags/Audio| 0.7534 0.8853
Lyrics/Tags - 0.8886 Tags/Lyrics - 0.9434

The first of these tables can be interpreted as follows. Recall that in the lyrics-
audio CCA experiment we found the second component to describe the arousal
of the lyrics. In the lyrics-tag space we found the second lyrical component
related to the dominance of the lyrics. Recall that the correlations are equivalent
to the angles between the projected datasets. Table 6(a) therefore shows that
the cosines of the angles between these vectors and the third CCA component
are 0.9899 and 0.8886 respectively, but that the cosine of the angle between
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themselves is 0.8679. This shows that the 3-Way CCA component sits somewhere
between arousal and dominance, which can be verified by looking at the top and
bottom-ranked words in Tables 2, 3 and 5.

A similar, and in fact stronger pattern can be observed in tag space by inves-
tigating Table 6(b). Again, the 3-way CCA analysis seems to be an intermediate
between the ‘old vs new’ dimension observed in the audio-tag space (Table 3,
second component) and the dominance discovered in the lyrical-tag space (Table
4, second component).

5.2 Conclusions & Further Work

In this paper, we have conducted a large-scale study of the correlations between

audio, lyrical and tag features based on the Million Song Dataset. By the use of

pairwise 2-dimensional CCA we demonstrated that the optimal correlations be-

tween these datasets appear to have reconstructed the valence/arousal /dominance
dimensions of the core affect space, even though this was in no way imposed by

the algorithm. In some cases, we discovered components which appeared to cap-

ture some genre information, such as the third component of Table 3.

By using 3-dimensional CCA, we studied the 3 datasets simultaneously and
discovered that valence and arousal were the most correlated features. The cor-
relations beyond 2 or 3 components are difficult to interpret, which fits well
studies which describe the core affect space as a 2 or 3 dimensional space.

In our future work we would like to investigate different multiway CCA ex-
tensions such as those seen in [12], perhaps on new datasets as they are released.
We also would like to more thoroughly investigate regularization techniques to
avoid overfitting.
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